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1. INTRODUCTION 
 
1.1. Definition/History/Uses 
 
This presentation can be summed up in one sentence: The Monte Carlo method is a powerful statistical 
technique for modeling nature. 
 
The Monte Carlo method can be defined loosely as any mathematical technique that makes use of random 
numbers. The name comes from the resort town and site of the casino in Monaco. Such techniques are 
also called stochastic techniques. 
 
The Monte Carlo method generally is attributed to scientists working on the development of nuclear 
weapons in Los Alamos during the 1940s. However, its roots go back much further. 
 
Perhaps the earliest documented use of random sampling to solve a mathematical problem was that of 
Compte de Buffon in 1772. Laplace suggested in 1786 that π could be evaluated from random sampling. 
A century later, people performed experiments in which they threw a needle in a haphazard manner onto a 
board ruled with parallel straight lines and inferred the value of π from observations of the number of 
intersections between the needle and the lines. Lord Kelvin appears to have used random sampling to aid 
in evaluating some time integrals of the kinetic energy that appear in the kinetic theory of gases and 
acknowledged his secretary for performing calculations for more than 5000 collisions. 
 
Enrico Fermi invented a form of the Monte Carlo method when he was studying the moderation of 
neutrons in Rome. Although Fermi did not publish anything, he amazed his colleagues with his 
predictions of experimental results. Only later would he reveal that his “guesses” were really derived from 
the statistical sampling techniques that he performed in his head when he could not fall asleep. 
 
During World War II, Fermi joined Stan Ulam, John von Neumann, Robert Richtmyer, and Nicholas 
Metropolis in Los Alamos. These were the founders of the modern Monte Carlo method. They realized 
that statistical sampling techniques were impractical because they were long and tedious, but with the 
development of computers, they could become practical. Statistical sampling techniques reminded 
everyone of games of chance, where randomness statistically would become resolved in predictable 
probabilities. It was Nicholas Metropolis who noted that Stan Ulam’s uncle would borrow money because 
he “just had to go to Monte Carlo” and thus named the mathematical method “Monte Carlo.” 
 
Since then the Monte Carlo method has become the method of choice for solving radiation transport 
problems. These problems model how radiation interacts with matter. Monte Carlo also is used for 
probabilistic risk analysis, solid state physics, equations of state, economics modeling, political and 
sociological modeling, and many other uses that will not be described further. Nonlinear radiation 
transport Monte Carlo, where the radiation changes the medium with which it is interacting, also will not 
be covered. This presentation is limited to radiation transport linear Monte Carlo. 
 
1.2. Monte Carlo Methods vs Deterministic Methods 
 
Nature is modeled in two ways: using deterministic methods and using stochastic methods. Deterministic 
methods involve modeling something with an equation which is then solved, or determined. The 
deterministic methods can be solved exactly, but the equations are usually approximate. On the other 
hand, the Monte Carlo method is as exact as we want it to be, but the solution is statistically approximate. 
Deterministic methods are global; the answer is solved everywhere at once, but it is an approximate 
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answer. Monte Carlo methods are local; any given point in phase space can be modeled in as much detail 
as desired, but then a final answer can never quite fully converge. 
 
In brief, deterministic methods get the right answer to the wrong problem. Monte Carlo methods get the 
wrong answer to the right problem. Only in the limit of infinitely small deterministic space, energy, time, 
and angle meshes or in the limit of an infinite number of Monte Carlo statistical samples can both 
methods give the correct answer. 
 
Faster computers and better Monte Carlo methods greatly have reduced the problem of slow statistical 
convergence for the Monte Carlo method. Because the Monte Carlo method is local, we can model what 
is happening in as much detail as we want. In the case of neutron and photon transport, where the physics 
is well understood, we can model what is happening nearly perfectly. This modeling results in a truly 
predictive capability for how radiation interacts with matter. 
 
Furthermore, the Monte Carlo method is eminently realistic and very intuitive. In deterministic methods, 
the physics is hidden in mathematical arrays, and the method is cast in terms of abstract equations. In 
Monte Carlo, the focus is on the simulation of the actual physics that occur. To model Compton 
scattering with a deterministic method, the Boltzmann transport equation is solved, which bears little 
resemblance to the Klein-Nishina equation; in the Monte Carlo model, the Klein-Nishina equation is 
actually used. 
 
2. FUNDAMENTALS 
 
2.1. Cross Sections 
 
To describe how the Monte Carlo method works for radiation transport problems, it is important to first 
consider the principal parameter of probability in such calculations: the cross section. The cross section, 
σ, is proportional to the probability that an incident particle will interact with a nucleus, atom, or other 
target. The units for cross sections are those of area because associated with every scattering center is an 
area σ such that an incident particle heading for it will interact. The units are “barns,” or 10-24 cm2. The 
name came about because early researchers thought the probability of some interactions was so great that 
it was like striking the “broad side of a barn.” 
 
The probability of an interaction is also proportional to the density of the target atoms. In a vacuum (zero 
density), there will be no interactions. In a high-density medium, there will be many interactions. The 
product of the atom density, ρ, and the cross section, σ, is the “macroscopic” cross section, Σ = ρσ, with 
units of inverse centimeters. 
 
2.2. Direct Sampling 
 
Cross sections and probabilities are used in Monte Carlo sampling schemes. These schemes use random 
numbers to sample various physics phenomena statistically. Either direct or rejection sampling techniques 
can be used.  

 
A direct sampling technique may be illustrated by sampling the distance to collision. The probability of a 
particle traveling a distance x and then colliding within dx is 
 

dxedxxp xT-
T

ρσρσ=)(    . 
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Here, ρ is the atom density and σT is the total cross section. The fundamental principle for continuous 
probability density functions, p(x), which is normalized as 
 

1
0

 = dx(x)p  ∫
∞

 

 
is 
 

dttp = P(x) = 
x

)(
0∫ξ    . 

 
This equation determines x uniquely as a function of ξ , where ξ is a random number. Moreover, if ξ is 
distributed uniformly on 0 < ξ < 1, then x falls with frequency p(x)dx in the interval (x, x + dx). Thus, to 
sample directly the distance to a collision, 
 

∫ −− −===
x xTtT

T edtexP
0

1)( ρσρσρσξ  

 
and 
 

)1(1 ξ
ρσ

−−= lnx
T

   . 

 
However, because 1 – ξ is distributed in the same manner as ξ, it may be replaced by ξ and we get 
 

)(1 ξ
ρσ

lnx
T

−=    . 

 
2.3. Random Numbers 
 
Modern Monte Carlo calculations do not really use random numbers. If the numbers were truly random, 
then the results would change every time a calculation was made. Consequently, pseudo-random numbers 
are used. A mathematical algorithm, known as a random number generator, is used to come up with the 
same sequence of pseudo numbers for every calculation. These random numbers are chosen so that they 
have random characteristics, such as the proper mean and distribution. Generally, the nth random number 
is the fraction 
 

0 < ξn <1   . 
 
Random number generators can be relatively simple. Our production codes use the “congruential 
method” invented in the 1950s. 
 

ξn+1 = Aξn    . 
 

If the old random number, ξn , the multiplier, A, and the new random number, ξn+1  are all 64-bit numbers 
on a computer, then we use only the 64 least significant bits of the 128-bit product, Aξn , to generate the 
new random number ξn+1 . Mathematicians get all excited about new and better random number 
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generators, but having a better random number generator is seldom consequential in radiation transport 
problems. 
 
2.4. Error Estimation: The Central Limit Theorem 
 
A statistical estimation of anything is of little value without knowing the statistical error. The Central 
Limit Theorem of statistics enables errors to be estimated. 
 
The Monte Carlo method may be thought of as the solution to an integral: 
 

f (x)dx =1∫    , 

 
where f (x) is the underlying probability density function for a given problem normalized so that the 
integral is unity. Seldom is f (x) as simple as the exponential function from which we sampled to get the 
distance to collision. Usually, the underlying probability density function is very complicated and 
unknown because it is a function of all the geometric, physical, and mathematical details of the entire 
problem. 
 
The Monte Carlo tallies estimate the statistical “mean” value of the underlying problem probability 
distribution function 
 

M1 = xf (x)dx∫    , 

 
where M1 is the first moment of the underlying probability distribution function and is also the “expected 
value.” In the Monte Carlo simulation, the expected value, or tally mean, is estimated as the average 
value of scores, xi averaged over all N histories of the Monte Carlo calculation: 
 

  t1 =
1
N

∑xi    . 

 
To estimate errors, the second moment is also used: 
 

M2 = x2∫ f (x)dx    , 

 
which is estimated in the Monte Carlo calculation as 
 

  2
2

1
i

x
N

∑=t    . 

 
According to the Central Limit Theorem of the theory of probability, the distribution of the sum of N 
independent, identically random variables (Monte Carlo history estimators, xi, in our case) with finite 
means and variances approaches a normal distribution as N takes on large values. Consequently, there is a 
standard deviation, σ, such that the tally estimate of the mean, t1, is within a standard deviation, S, of the 
true mean, M1: 
 

∫ −

∞→
=+≤≤−

b

a

t

N
dtebSMtaSMP 2/2

111 2
1}{lim
π

   . 
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That is, the probability that the estimated mean, t1, as N → ∞, is between M1 - aS and M1 + bS, can be 
calculated from a normal distribution, which is the expression on the right. If a = 1 and b = 1, then the 
expression on the right is approximately two-thirds and the estimated mean, t1, is therefore within the 
bounds of the true mean, M1 ± S two-thirds of the time. The standard deviation, S, is related to the 
variance as 
 

S =
σ
N

   . 

 
The variance is given by 
 

∫
∞

∞−
−= dxxfMx )()( 2

1
2σ  

 

         ∫∫∫
∞

∞−

∞

∞−

∞

∞−
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        =    . M2 − M1
2

 
The Monte Carlo estimate of the variance is then 
 

σ 2 ≈ t2 − t1
2    . 

 
In most Monte Carlo calculations, we are interested in the relative error, R, which is the standard 
deviation normalized by the tally mean, or 
 

R =
S
t1

=
σ
Nt1

   . 

 
The above equation shows why the Monte Carlo error estimate decreases as the square root of the number 
of histories, N. The relative error is therefore 
 

R =
σ

t1 N
=

t2 − t1
2

t1 N
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2.5. Rejection Sampling: π 

 
The rejection sampling of π illustrates many of the fundamentals of Monte Carlo: the use of random 
numbers and sampling and the estimation of errors. Rejection sampling is an alternative to direct 
sampling. Usually both methods can be used; the sampling efficiency determines which method is 
chosen. 
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Suppose we wish to calculate the value of π by Monte Carlo. We inscribe a circle of radius r into a box 
with side 2r. The area of the circle is Ac = πr2. The area of the box is Ab = 4r2. Thus, π = 4Ac /Ab. To 
sample the value of π, we sample the area of the box uniformly and tally a score of 4 whenever the part of 
the box sampled is also in the circle; we tally a score of 0 when the part of the box sampled is not in the 
circle. If we have N samples, we will score 4 proportionately to the time we sample inside the circle, Ac 

/Ab , and thus estimate π. 
 
Suppose we have 10 samples and 7 are sampled in the circle. Then the estimate of π is 
 

ix
N

t ∑=
1

1  

 

     8.247
10
1

=×=    . 

 
The second moment is 
 

2
2

1
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     2.11167
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1

=×=    . 

 
 
The relative error is 
 

R
Nx

x
NNt

t

i
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  207.004286.
10
1

4.78
2.11

==−=    . 

 
Thus, the estimate of π is  

 
2.8 ± .6   , 
 
or  
 
2.2 < π < 3.4   . 

 
It is evident that many more samples, or histories, must be run to get a more accurate result. The 
following table shows the result of a short program to sample π. The number of particles started is nps and 
the hits are the number of times the rejection sampling hit in the circle. 

Output from Short Monte Carlo Program to Sample π 
 
 nps hits mean rel err true err 
 10. 8. 3.2000 0.1581 0.0186 
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 100. 77. 3.0800 0.0547 0.0196 
 1000. 785. 3.1400 0.0165 0.0005 
 10000. 7874. 3.1496 0.0052 0.0025 
 100000. 78545. 3.1418 0.0017 0.0001 
 200000. 157203. 3.1441 0.0012 0.0008 
 300000. 235634. 3.1418 0.0010 0.0001 
 400000. 314097. 3.1410 0.0008 0.0002 
 500000. 392884. 3.1431 0.0007 0.0005 
 600000. 471319. 3.1421 0.0007 0.0002 
 700000. 549761. 3.1414 0.0006 0.0001 
 800000. 628385. 3.1419 0.0006 0.0001 
 900000. 706851. 3.1416 0.0006 0.0000 
 1000000. 785360. 3.1414 0.0005 0.0000 
 
Finally, note again that either direct sampling or rejection sampling can be used for most functions. In 
direct sampling we solve for the variables of density functions in terms of random numbers. Note that we 
also could sample the function  by rejection by drawing the function inside a box from 
0 < p(x) < 1 high and 0 < x < ∞ and then rejecting all samples above the curve and accepting all samples 
below the curve. However, the efficiency of this scheme is 1/∞ = 0. Likewise, we could also sample π 
directly by sampling the height of the box uniformly and averaging the horizontal chord length within the 
circle. If the circle is of radius 1 and the sampled height is y = ξ, then the horizontal chord length in the 
quadrant is 

x
T

Texp ρσρσ −=)(

 
21 ξ−=x    . 

 
3. THE RANDOM WALK 
 
3.1. Shielding 
 
To illustrate how the Monte Carlo method works and how it is eminently realistic, consider a typical 
radiation transport shielding problem. The goal is to get particles (radiation) from a source, through a 
geometry, to a tally region or some other place. For example, suppose we are designing the shielding for 
the Dual Axis Radiographic Hydrodynamics Test (DARHT) Facility. We have a source of radiation on 
one side of the wall, and we want to know what gets out on the other side. We simply solve the problem 
by having a mathematical simulation of the physical situation. We follow one mathematical particle after 
another as it bounces through the wall. Some particles get absorbed. Some particles bounce back out the 
source wall. Some particles penetrate. This occurs in nature, and this occurs in the Monte Carlo 
simulation. Statistical laws govern what happens in nature, and statistical laws govern what happens in 
the Monte Carlo calculation. 
 
First, we model the source. If the true physical source is a plane wave, we start our Monte Carlo particles 
in a direction normal to the surface directed inward. If the true physical source is isotropic, we start with a 
cosine distribution. If the true physical source is anything else, if it can be characterized, we can “sample” 
it and model it exactly as it is characterized. If the source is distributed in some way over the face of the 
wall, we can model any known distribution. If the source particles have an energy distribution, we can 
sample from that distribution. Sampling methods involve random numbers to pick variables from a 
distribution, much like throwing dice or gambling at the Monte Carlo casino. The point is that because we 
have to model only one source particle at a time at one particular location in phase space, we can model it 
in as much detail as we like. 
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Thus, the Monte Carlo simulation begins by throwing the dice to sample the initial phase space variables 
of the starting source particle history. Once a source particle is modeled, we know its location, x, y, z; its 
direction, with direction cosines u, v, w; its energy, E; and its time, T. We also need to know its weight, 
W, which is the physical number of particles represented by the statistically sampled particle. Usually, 
Monte Carlo calculations are normalized to 1 source particle, so the starting weight is 1. 
 
We now do the “random walk.” We statistically sample what happens to the particle as it traverses the 
geometry: in this case, the DARHT wall. We use random numbers, or throw the dice, to choose between 
events such as capture, scatter, (n,xn), or fission, according to their probabilities, or cross sections. Thus, 
the random walk is just a matter of deciding what the probabilities of various events are and then using 
random numbers, or throwing the dice, to choose between them. 
 
3.2. Criticality 
 
Another illustration of how the Monte Carlo method works is the calculation of nuclear criticality. 
Nuclear criticality is an eigenvalue problem in which we estimate the value of keff , which is the number of 
neutrons produced from fission in one generation per number of neutrons produced in the previous 
generation. If keff < 1, then the system being modeled is subcritical. If keff = 1, then the system is critical 
and we have a self-sustaining nuclear chain reaction. If keff > 1, then the system is supercritical and we 
have a nuclear accident or explosion. 
 
The Monte Carlo random walk works by running the equal numbers of histories in batches, or cycles, 
representing each generation of neutrons. We start with source neutrons distributed in volume throughout 
all fissionable materials in the problem. Each neutron is isotropically emitted with its energy from a 
fission spectrum. These neutrons then random walk through the geometry until they escape, are absorbed, 
or undergo fission. Whenever a neutron has a fission, the fission neutrons are not followed further. 
Rather, they are stored as source neutrons for the next generation, or cycle. 
 
At the end of each cycle, keff is estimated as the ratio of the number of fission neutrons created per source 
neutron in that cycle. Then the newly created fission neutrons are eliminated randomly or duplicated so 
that the number of source neutrons is the same for each cycle. The number of fission neutrons created per 
source neutron in each cycle is 
 

dVk feff νσφρ∫=    , 

 
where ρ is the atom density, φ is the flux, ν is the number of neutrons emitted in a fission, σf is the fission 
cross section, and V is the volume. 
 
3.3. Estimators 
 
The result of the random walk is that the particles we are following in our model do just what the physical 
particles do. If we are interested in how many traverse the wall, then we simply count them if and when 
they cross the outer-wall boundary. This counting is known as a “tally.” We do tallies with estimators. A 
surface estimator merely counts particles as they cross a surface. Other tallies can be more elaborate. 
The four Monte Carlo estimators are surface, event, track length, and next event. 
 
3.3.1. Surface Estimators 
Surface estimators are relatively simple. Scores are made when particles cross geometric surfaces. 
Typically, the weight of the particles is scored, which is in nuclear engineering jargon the “surface 
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current.” The surface estimator is used in the homework problem to determine how many particles cross 
the slab wall. 
 
3.3.2. Event Estimators 
Collision estimators are the most common event estimators. Event estimators are estimators that are made 
at each event. The event estimator was used in both the calculation of π and the distance to collision 
examples described earlier. Collision estimators also are used to calculate reactions rates, such as the 
fission rate, in which case the weight times cross section is usually scored. 
 
3.3.3. Track Length Estimators 
Track length estimators are used to calculate quantities over volumes in space, such as particle flux. In 
nuclear engineering jargon, the particle flux is the particle density times velocity: 
 

φ = ηv    . 
 
In Monte Carlo, the time-integrated flux, or fluence, is then 
 

V
dlWdt

dt
dl

V
Wvdtdt ===∫ ηφ    , 

 
where dl is the track length between events (source, collision, and surface crossing); W is the particle 
weight; and V is the volume. Thus, the flux is estimated by the track length per unit volume. 
 
In the limit of an infinitely thin volume, V , where dx is the thickness of the volume and A is the 
surface area. The track length is d

→ Adx
l → dx / µ , where µ is the cosine between the surface normal and the 

particle trajectory. Thus, the surface estimator of the flux on a surface is related to the track length 
estimator of the flux in a volume as 

 

W
dl
V

→
W
Aµ

   . 

 
Reaction rates over a volume commonly are estimated by track length estimators. The total heating by 
particles passing through a volume is estimated as 

 
pa

pg

φσ THdt =
pa

pg
∫ W

dl
V

σT H    , 

 
where pα and pg are the atom and gram densities, σΤ is the total cross section, and H is a heating number 
in millielectron volts per gram. 
 
3.3.4. Next-Event Estimators 
Next-event estimators are the most complicated estimators. Suppose we want to determine the flux at a 
point. The probability of having a random walk of Monte Carlo particles exactly to a point is zero. Even 
if the point is finite in size, it may take billions of statistical trials, or histories, to find a way there 
randomly. 
 
The next-event estimator does not require a random walk particle to get to the point. Instead, at each 
event, the random walk proceeds as usual, but an estimate is made as if the next event were to go straight 
to the point. The estimate of the flux at the point for the next event is 
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24
)(2

R
pWe xT

π
µφ

ρσ−

=    , 

 
where  is the attenuation through all materials between the event and the next event; 2p(µ) is the 
probability density function for scattering toward the point where the flux is detected, with µ being the 
cosine of the angle between the incident particle trajectory and the flight path to the point; 4πR

xTe ρσ−

2 is the 
solid angle attenuation; and R is the distance from the event to the point of the next event. 
 
With the next-event estimator, improbable events are now very probable. Instead of making an estimate 
once every zillion histories when a particle random walks to the point, an estimate is made for every 
source or collision event of every history. 
 
4. VARIANCE REDUCTION 
 
Because Monte Carlo calculations take a long time to converge to an acceptable answer, they were once 
considered to be the “method of last choice.” However, modern computers have sped up Monte Carlo 
calculations by factors of thousands in the past few decades. Variance reduction methods have sped up 
Monte Carlo calculations by factors of millions. 
 
A variance reduction technique reduces the variance of a Monte Carlo calculation for a fixed problem 
running time. As an alternative, the variance can be held constant, and the variance reduction technique 
reduces the running time. For example, suppose an analog calculation, one that directly simulates the 
physical problem without variance reduction, takes 1 hour to calculate a tally with a relative error of 10%. 
To reduce this error to 5%, we could (1) run the problem for four times as many histories, which would 
take 4 hours (because the relative error decreases as the square root of the number of histories); (2) use 
variance reduction to reduce the error to 0.00001%; or (3) use variance reduction to achieve a 5% 
variance in 1 second. Variance reduction techniques are extremely powerful. 
 
The four classes of variance reduction methods are problem truncation, population control, modified 
sampling, and pseudo-deterministic methods. 
 
4.1. Problem Truncation 
 
Problem truncation is used in every Monte Carlo problem. We simply choose to ignore parts of the 
problem. For example, in modeling the physics of a room, we do not continue the model to infinity by 
modeling the Eiffel Tower in Paris. We also do not model every nut and bolt in a machine. We do not 
model energies or time in ranges where they cannot affect the problem outcome. 
 
Although problem truncation is the simplest variance reduction technique, it is also the most dangerous to 
use. Further, it is the only biased estimator in that it always results in underpredicting results because any 
contribution to the finally tally from parts of truncated phase space are omitted. Common truncation 
methods include geometry truncation, time cutoff, and energy cutoff. 
4.2. Population Control 
 
The most popular form of variance reduction is population control. At any time we wish, we can split the 
histories we are following into two or more histories, provided we adjust the particle weight accordingly. 
Therefore, for example, we can assign a geometric region an “importance” twice that of the source 
region. Whenever a particle of weight W enters the higher-importance region, it is split into two particles 
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of weight W/2. In this way, we have more statistical samples in regions important to our problem, but 
because the total weight is conserved, we will still converge to the correct answer. 
 
Likewise, we can “Russian roulette” particles going from a higher-importance region into a lower-
importance region. If the importance change between regions is a factor of two, then Russian roulette 
works by terminating, or killing, a particle going into the region with a probability of one-half, but giving 
those particles that survive time twice the weight. In this way, we have fewer statistical samples in 
regions unimportant to our problem, but because the total weight is conserved on average, we still have 
an unbiased estimator and converge to the correct answer. 
 
Population control methods allow us to have any number of statistical samples we want in any part of our 
problem we want. Consequently, we have lots of statistical samples in important regions of the problem, 
which reduces the variance by having better sampling, and we have fewer statistical samples in 
unimportant regions, which reduces the problem time (thereby reducing the variance per unit time) by not 
wasting time on them. 
 
Common population control methods include geometric splitting or “importance sampling,” “weight 
windows,” weight cutoff (in which particles dropping below a given weight play Russian roulette rather 
than problem truncation by termination), and energy and time splitting/roulette. 
 
4.3. Modified Sampling 
 
The third class of variance reduction methods is modified sampling. At any time we can sample from a 
different distribution than the analog, or true physical, distribution as long as we modify the particle 
weight by the ratio of the true sampling probability density function to the one from which we sampled. 
 
Here are some examples. Sources may be biased in energy, time, or direction. Suppose you have a photon 
source with two equiprobable source lines: 100 keV and 10 MeV, each chosen with equal probability, 
0.5. If the 10-MeV line contributes 90% of your tally result, you may wish to sample it 90% of the time 
(with probability 0.9). The weight adjustment would be the ratio of the true probability to the biased 
probability, 0.5/0.9 = 5/9. The expected starting weight would still be 90% x 5/9 = 1/2. Likewise, the 
100-keV line would be sampled 10% of the time (with probability of 0.1), but the starting weight would 
be 0.5/0.1 = 5 so that the expected starting weight from this line would still be 10% x 5 = 1/2. 
 
Another example of modified sampling is “path length stretching,” in which the cross sections are 

modified from σΤ to σ′Τ . If σ′Τ < σΤ , then the distance to collision is increased from  lnx
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Path length stretching in a shielding problem will cause more particles to penetrate the shield and score, 
thus increasing problem efficiency and reducing the variance. Other examples of modified sampling are 
forced collisions, collision energy bias, collision angle bias, and reaction selection bias. 
 
Thus, not only can we put particles anywhere we want to, but also we can sample from any convenient 
probability density function we desire, as long as we adjust the weight accordingly. The goal in all cases 
is to modify the Monte Carlo random walk so that we have more samples and spend more time in regions 
of phase space that contribute to our tallies and less time and fewer samples in regions of phase space that 
do not contribute to our samples. 
 
4.4. Pseudo-Deterministic Methods 
 
The final class of variance reduction techniques is the most complex: pseudo-deterministic methods. 
Hybrid Monte Carlo deterministic methods are an example in which neutron thermalization is treated 
with the deterministic diffusion equations rather than Monte Carlo, which wastes much time because 
particles just scatter back and forth without doing much of interest in the process of diffusing. Another 
example is the “DXTRAN” method, in which the next-event estimator is used to transport particles from 
events that occur in the random walk to a sphere somewhere else in phase space where the particles 
would have a difficult time going otherwise. Then the particles continue their random walk with inside 
the sphere with the weight lowered by the next-event estimate, 
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The DXTRAN technique is kept unbiased by killing any particles that actually get to the DXTRAN 
sphere by random walk so that on average, the total particle weight is preserved. 
 
5. CONCLUSION 
 
5.1. Radiation Transport Applications 
 
The Monte Carlo method has a wide variety of applications for radiation transport. Experiments are 
expensive; calculations are cheap. Radiation is dangerous; calculations are safe. Some environments, such 
as outer space, can only be calculated. 
 
The Monte Carlo method is used to design experiments and their detectors. Many detectors used for 
airport security are designed with Monte Carlo. This method has many defense science applications, such 
as vulnerability, hardness, lethality, and effects. Monte Carlo also has medical applications, such as 
cancer-therapy radiation-treatment planning and the design of accelerators for medical applications. The 
Monte Carlo method is used for reactor analysis, criticality safety, radiation shielding, fuel management, 
and reactor detector design. Another application is the assay of bulk materials, such as quality control for 
batches of cement or monitoring of effluents. Monte Carlo is used to design well-logging tools used in oil 
and gas exploration. Space applications include detector response analysis, shielding for astronauts, 
shielding for electrical components, and space nuclear power. Monte Carlo was essential for the analysis 
of data in the recent discovery of ice on Mars. 
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Nearly everything having to do with radiation, from food irradiation to waste treatment, from medicine to 
military applications, from underground well logging to outer space, has benefited from the Monte Carlo 
method. 
 
5.2. Summary 
 
The Monte Carlo method is a powerful statistical technique for modeling nature. 
 
We have seen that there are two methods of modeling nature in computational science: deterministic 
methods and statistical methods such as the Monte Carlo method. The strengths of the Monte Carlo 
method are the following. 

 
1. Realistic: the Monte Carlo method is eminently realistic and intuitive. The random walk 

simulates the probabilistic nature of the physical world. On the other hand, deterministic methods 
solve abstract equations. The physics is all buried in the databases. 

 
2. Detailed modeling: Because the Monte Carlo method needs to know only about the point in phase 

space where it is at any given time, it can model nature in as much detail as desired. Therefore, it 
is physically accurate. Almost any physical distribution can be sampled, by rejection, directly, or 
both. Nearly any information we want from the Monte Carlo simulation can be extracted by four 
kinds of estimators. The deterministic methods, on the other hand, only approximate the physical 
problem and are much more limited in the information they can provide. 

 
The weaknesses of the Monte Carlo method are the following. 
 

1. Local answers: Methods are global and solve the problem everywhere. Monte Carlo methods are 
local, and by focusing on “important” regions of phase space, information at other regions is lost. 
Thus, Monte Carlo methods are not as efficient for problems where an answer is desired 
everywhere. 

 
2. Statistical answers: Deterministic methods exactly solve the discretized transport equation. 

Monte Carlo methods only converge statistically toward the correct solution. However, the Monte 
Carlo relative error can be readily calculated, making it possible to estimate how close the Monte 
Carlo estimators are to the true solution. 

 
3. Slow convergence: The Monte Carlo method converges only as 1/ N . However, variance 

reduction techniques have sped up the Monte Carlo method greatly; it is now competitive with 
deterministic methods in two dimensions and faster in three. 

 
We have shown enough of the fundamentals of the Monte Carlo method so that you can write your own 
Monte Carlo computer code. However, do not be deceived into thinking production Monte Carlo codes 
are simple. Writing a general-purpose radiation transport Monte Carlo code, with arbitrary three-
dimensional geometries, time-dependence, fully detailed continuous-energy physics for multiple particle 
types over a broad energy range, with lattice geometry capabilities, eigenvalue calculators, multigroup 
options, general sources, flexible tallies, false convergence detection, etc., plus multitasking, graphics, 
documentation and quality control, would require $10 to $100 million to start from scratch. The Monte 
Carlo codes at Los Alamos and the databases behind them represent hundreds, even thousands, of person-
years of development. These codes truly have become the repositories of a vast body of physics 
knowledge. 
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The future of the Monte Carlo method for computational radiation transport physics is very bright. It is 
one of two ways of solving computational physics radiation transport problems, and its weaknesses 
relative to the alternative method keep getting resolved while its strengths become stronger and more 
compelling. Monte Carlo is a crucial methodology for advancement of the mission of Los Alamos 
National Laboratory. 
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